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Abstract--Analytical and numerical investigations of the effects of particles on the stability of two-phase 
wake flows are presented. The major simplifying assumptions are that the mean velocity profile of the 
two-phase flow is identical to that of the single-phase flow and that the fluctuations of the flow field have 
no effect on the particle initial velocity, The continuous-phase flow is assumed incompressible and inviscid. 
The resulting modified Rayleigh equation was solved numerically. The results presented are applicable 
to dilute two-phase flows consisting of solid particles or liquid drops in a gaseous environment. For the 
two-phase wake flow, it is found that the presence of the particles enhances the stability of the flow. 
For the absolutely unstable single-phase flow, the particles lower the imaginary part of the branch point 
and can transfer the flow to the convectively unstable region. For the convectively unstable flow, the 
particles can lower the most amplified rates in spatial instability. 
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1. I N T R O D U C T I O N  

Stability analyses and experiments for single-phase parallel flows, such as mixing layers, jets and 
wakes, have been under intensive development for the past few decades (Ho & Huerre 1984; 
Huerre & Monkewitz 1990). Classical hydrodynamic instability theory usually addresses the 
problem from either the spatial or temporal point of view. In the temporal stability analysis, it is 
implicitly assumed that the disturbances evolve in time from some initial spatial distribution. 
The wavenumber is assumed to be real and the complex frequency, which is a function of the 
wavenumber, is evaluated to determine the stability of  the system. The temporal theory works well 
for the Taylor-Couette  and Rayleigh-Benard types of flows. For free-shear layers and boundary 
layers the instability is usually controlled by periodically forcing the flow at a given frequency. 
Experimental results seem to correlate closely with the predictions of spatial theory, where the 
frequency is real and the wavenumber is complex. One important question arises; i.e. how to choose 
the spatial and temporal theory for a particular flow system. According to Huerre & Monkewitz 
(1985), a choice can only be made once the absolute or convective nature of the instability has been 
determined. The concept of absolute vs convective instability was introduced initially by plasma 
physicists (Briggs 1964; Lifshitz & Pitaevskii 1981; Bers 1975). Recent reviews of the topic for 
free-shear flows are given in Huerre (1987) and Huerre & Monkewitz (1990). A flow is convectively 
unstable if its impulse response decays to zero for large times at all points in the flow. In absolutely 
unstable flows the presence of a transient disturbance at any location leads, in the linear regime, 
to exponential growth everwhere in the system. In the absolutely unstable case any transients 
generated by switching on the excitation or any residual background fluctuations will amplify and 
contaminate the entire flow. Whereas in the convectively unstable case these transients are 
convected downstream and, thus, spatially growing waves at the excitation frequency can be 
observed. Hence the spatial theory prediction is only meaningful in convectively unstable flows. 
Single-phase instability for two-dimensional wake flows has been investigated quite extensively 
(Mattingly & Criminale 1972; Drazin & Reid 1981). Only recently, Monkewitz (1988) investigated 
the nature of  the instability in two-dimensional wakes at low Reynolds numbers. Monkewitz (1988) 
found that in the wake both absolute and convective instabilities could exist simultaneously in 
different regions of  the flow, unlike the two-dimensional mixing layer where the flow is only 
convectively unstable and a spatial stability theory is applicable. 

Two-phase (gas-solid particle, gas-droplet and liquid-gas bubble) shear flows can be found in 
many industrial and energy-related processes (Chigier 1981). The stability of the two-phase flow 
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is important to the design and efficient operation of the entire flow system. The main purpose of 
the present investigation is to examine the effects of particles on the absolute/convective instability 
of a two-phase wake flow. 

Before addressing the two-phase stability of a wake, one needs to address the interactive 
dynamics between the particles and the large-scale structures which dominate the wake flows. 
A physical model based on the mechanics of the large-scale vortices and their interactions with 
the particles has been developed by Crowe et al. (1985) and Chung & Troutt (1988). This model 
has been verified by numerical simulations (Crowe et al. 1985; Chung & Troutt 1988) and 
experimental results (Kamalu et al. 1989; Wen et al. 1988). The central idea of this model is that 
the particle dispersion pattern in flows with large-scale vortex structures is dominated by the ratio 
of the particle aerodynamic response time to the flow characteristic time associated with the 
large-scale vortex structures. This time scale ratio is usually referred to as the Stokes number (St). 
At St<< 1, solid particles dispersing in gaseous flows will follow closely the flow structure and 
disperse at the rate of the fluid particles. Particles would be little affected by the flow if the St is 
large compared to unity. Particles with St of the order of unity, however, might be expected to 
disperse at rates greater than the fluid particles. This larger dispersion effect is due to the vortical 
nature of the large-scale structures which create a centrifuging effect to remove the particles from 
the vortex cores. These recent findings concerning the importance of vortex structure on the partial 
dispersion process impress the need for multiphase stability analyses, since large vortex structures 
are probably closely connected to stability type processes. 

The stability characteristics of two-phase flows have not received much attention in the literature. 
Pioneering contributions on two-phase stability have been made by Acrivos & his coworkers 
(Herbolzheimer 1983; Shaqfeh & Acrivos 1987; Borhan & Acrivos 1988) for sedimentation flows 
inside an inclined settler. They developed linear stability models for a wide range of system 
parameters to predict the effects of particles on the stability characteristics during sedimentation. 
Saffman (1962) discussed the linear stability of a dusty gas. He suggested a possible destabilizing 
effect due to the decrease in the equivalent kinematic viscosity of the gas and a stabilizing effect 
due to the friction caused by the particles. Yang et al. (1990) investigated the spatial instability of 
a two-phase mixing layer. In this paper, a simplified mathematical model is introduced as a first 
step toward understanding the effects of foreign particles on the stability characteristics of the wake 
flow. The major assumption involved is that the mean velocity profile of the two-phase flow is 
approximated as that of the particle-free single-phase flow. Laser velocimetry measurements 
downstream of a splitter plate (Wen et al. 1988) showed that the mean velocity profiles at various 
downstream locations remain similar to those of single-phase mixing layers for particle loading 
ratios up to 20%. They also found that the mean velocity profile of the particles resembles closely 
that of the fluid at each downstream measurement location, except at the first few stations in the 
vicinity of the splitter plate. Therefore, the assumption of dynamic equilibrium between the two 
phases appears justified. 

Section 2 of this paper describes the mathematical model and governing equations. 
The numerical procedure is briefly outlined in section 3, and the calculated results are discussed 
in section 4. In section 5, some conclusions from the research are provided. 

2. BASIC THEORY AND THE M A T H E M A T I C A L  MODEL 

General Theory 

Before discussing the stability of a two-phase wake flow, one must first review the stability 
mechanism of particle-free flows. 

The classical linear stability theory of parallel shear flows is concerned with the development in 
space and time of infinitesimal perturbations imposed on a mean flow U(y) .  The mean flow is a 
parallel flow in the x-direction. 

The linear stability analysis begins be decomposing the velocities and pressure into the mean and 
transient response components. In the case of two-dimensional flows, the instantaneous velocities 
and pressure can be written as 

= U ( y )  + u ' (x ,  y,  t), [la] 
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~= v'(x,y, t) [lb] 

and 

= Po +p'(x,  y, t). [lc] 

Substituting the above into the Navier-Stokes equations and keeping only the linear terms, one 
obtains a set of linearized perturbed Navier-Stokes equations. The set is solved for the perturbed 
velocities, which are represented by the two-dimensional stream function ~,(x, y, t). It is assumed 
that the stream function has the following wave-like form: 

~ (x, y, t) = ck (y )exp[i(ctx --cot)], [2] 

where ~ is the wavenumber and co is the angular frequency. Substituting the stream function into 
the perturbed Navier-Stokes equation (Drazin & Reid 1981) yields, in most cases, an ordinary 
differential equation. Enforcement of the appropriate boundary conditions then leads to an 
eigenvalue problem, whereby the eigenfunction tp(y) exists only if 0t and ~o satisfy a dispersion 
equation of the form 

D [0t, o~, R] = 0, [31 

where R is a system-related parameter. 
The solution of this eigenvalue problem, for a certain type of mean velocity U(y), may be 

viewed as providing a relation co(e) between the complex wavenumber e and the complex angular 
frequency co. 

One can associate a differential or integro-differential operator D[-i(O/Sx),  i(8/8x), R] in the 
physical space (x, t) with the dispersion [3] in the spectral space (ct, co), such that the stream function 
th(x, t) satisfies the following equation: 

D - i ~ x , i ~ ; R  0 ( x , t ) = 0 .  [4] 

For the mathematical framework to be outlined next, the readers are referred to Huerre (1987) 
for more details. 

In order to study the absolute/convective instability, one defines the Green's function G(x, t), 
i.e. the impulse response of the flow, as the following: 

~x'  i st ; R G(x, t) = 6(x)5(t), [5] 

where 5 denotes the Dirac delta function. 
The basic flow is then said to be linearly stable if 

lira G(x, t) = 0 along all rays x/ t  = const; 
t ~ 30 

and it is linearly unstable if 

lira G(x, t ) --  oo along some rays x/ t  = const. 
t ~ 3o 

Among linearly unstable flows, one must further distinguish between two types of impulse 
response, which are convectively unstable, i.e. 

and absolutely unstable, i.e. 

X 

lim G(x, t) -- 0 along the ray t = 0; 
t ~ c o  

X 
l i m G ( x , t ) = o o  along the r a y - = 0 .  

The above can best be realized by examining the x - t  diagram given in figure l(a,b). Disturbances 
are introduced into the x - t  diagram at x0, all disturbances contained within the wedge are amplified 
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Figure 1. Sketch of impulse responses: (a) stable flow; (b) absolutely unstable flow; (c) convectively 
unstable flow. 

and those outside damped. For the convectively unstable case, as shown in figure 1 (a), the amplified 
disturbances are convected downstream leaving the basic flow undisturbed for a large time. On the 
other hand, as shown in figure l(b), for the absolutely unstable case, the amplified disturbances 
travel both downstream and upstream, and finally contaminate the entire flow field. 

In real flows, the non-linearities would prevent the amplitude of the disturbances from becoming 
unbounded and a saturated amplitude is reached after a certain time. It can be seen that absolutely 
unstable flows do not require a constant disturbance source, they have been called self-exciting for 
this reason (Koch 1985). 

As one can see, the form of the streamwise perturbation is 

u = c~ ' ( y ) exp[ i (~rx  - wrt)]exp(o~i t  - ~ ix) .  [6] 

In the above, q~ '(y) = dc~/dy, ~ = ~r + i~i and m = mr + i~oi. The wave growing in the space and time 
depends on the nature of exp(a), where 

a=og~t -c~ .x  or a : ( o g , - 7 ,  t ) .  

Each ray in the x - t  diagram of figure 1 corresponds to a unique complex wavenumber 7", 
where d~o (~*)/d~ = x / t  (Huerre 1987). From figure 1, it is evident that the instability characteristics 
of the flow can be determined through the ray x / t  = 0. The wavenumber associated with the ray 
x = 0, called ~0, will satisfy the equation d~o(~0)/d~ = 0, and hence the amplification rate, ~, is 
determined by the relationship, ogi(c(0). 

According to Bers (1975) and Huerre & Monkewitz (1985), a flow is absolutely unstable if the 
branch singular point lies in the upper half frequency plane; i.e. w~(~0) > 0. If  o9i(~0) < 0, then the 
flow will be convectively unstable or completely stable. 

Absolute and convective instability concepts provide the necessary theoretical framework to 
classify different types of open shear flows according to the qualitative nature of their dynamical 
behavior. For instance, shear flows that are locally convectively unstable everywhere [e.g. mixing 
layers (Huerre & Monkewitz 1985)] essentially display extrinsic dynamics. The spatial evolution 
of the unsteady flow is, in large part, determined by the character (such as amplitude, frequency 
content etc.) of the excitation that can be tailored to meet specific control goals. Such flows are 
noise amplif iers.  On the other hand, as mentioned before, shear flows with absolute instability of 
sufficiently large size (such as the wake behind a bluff body), may display intrinsic dynamics. These 
flows behave like oscillators.  

M e a n  Flow Profi le  

Based on the assumptions made in the previous sections, the mean flow velocity profile for the 
two-phase wake flow is assumed to be identical to that of the particle-free flow. Hence, the profile 
given by Mattingly & Criminale (1972) for a two-dimensional wake is adopted in our analysis: 

U*(y*) = U* + ( U * -  U*)sech2(ay*), [7] 

where the asterisk refers to dimensional quantities and U* is the centerline velocity of the wake 
flow; y* is the cross-stream coordinate and U* is the free-stream velocity. 
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With the free-stream velocity U* as the velocity scale and the half wake width as the length scale, 
[7] is non-dimensionalized as follows: 

U(y) -- 1 + (Uc - 1)sech2(try), [81 

where tr is chosen so that at y -- + 1, (U - 1) / (Uc-  1 )=  0.5. Uc is the dimensionless centerline 
velocity, which varies with downstream location. The longitudinal variation of U¢ is shown in 
Mattingly & Criminale (1972). 

Governing Equations 

Assumptions 

In addition to the mean flow profile assumption, the following assumptions are also made for 
the analysis: 

1. The flow is incompressible and inviscid. 
2. The particles are spheres with diameters which are small compared to the 

dimensions of large-scale structures. 
3. The particles and the flow are in dynamic equilibrium at the beginning of the 

transient (Wen et al. 1988). 
4. The material density of  the particle is much larger than that of  the carrier fluid. 

(This assumption is valid for gas-solid particle and gas-liquid droplet flows.) 
5. The small perturbations imposed on the flow have no effect on the particles during 

the initial moment. 

The governing equations of  the two-phase problem consist of two parts: one is for the continuous 
phase, i.e. the carrier fluid; the other is for the particles. Combining these two parts, one obtains 
the equation for the stability analysis of the system. 

Based on the assumptions made above, one can write the following dimensionless governing 
equations for the two-phase system. 

Continuous phase 

Continuity equation, 

Momentum equation, 

V .u = 0 [91 

D u  
Dt - Fp - Vp, [101 

where Fp is the force exerted on the continuous phase by the particles. 

Discrete phase 

Momentum equation. The general equation for the motion of  the particles is the dimensionless 
BBO equation, which has the following form: 

dup - P-Af + f~f (u - up) + /Ip) + Or(._  3 p/-~rr f' . - t i p  
dt = Op Vp ZA 2Op ~ / p ~ A ~ 0 ~ - - ~ t  tit'. [11] 

AS mentioned in the assumptions, the ratio Pr/Pp (fluid density/particle density) is << 1, we 
may neglect all the terms that are associated with this ratio. Equation [11] is, therefore, reduced 
to the following: 

duo =f~r (u - Up). [121 
dt ZA 

The interaction force per unit volume between the continuous phase and the dispersed phase is 
given by 

Fp = P ~xfzr %(up -- u). [13] 
Pr 



142 Y. Y A N G  et al. 

In the above equation, the bulk density of the fluid is approximated by its material density. 
The terms that appear in the above equations are defined as follows: 

1. up is the dimensionless velocity of the particle; u is the dimensionless velocity of 
the flow. 

2. pf is the material density of the fluid. 
3. p'p is the bulk density of the particles, which is defined as the mass of particles 

per unit volume of the two-phase mixture; p~ = N(ppnd3p/6), where N is the 
particle number density, pp is the particle material density and dp is the particle 
diameter. 

4. f i s  the ratio of the actual drag on the particles to the Stokes drag (Crowe et al., 
1985). 

5. rA =ppd~/181~ is the particle aerodynamic response time; /L is the dynamic 
viscosity of the fluid. 

6. 'cr = Lc/U~o is the flow characteristic time, where Lc is the length scale of bluff body. 
Thus, the ratio, 'CA/'Cf, is the Stokes number (St). 

7. p is the dimensionless pressure, non-dimensionalized by prU~.. 
8. t, the dimensionless time, is non-dimensionalized by 'cf. 

In summary, the dimensionless momentum equations for the two phases are 

and 

D u  = p p f ,  r r (up - u) - V p  [14] 
D-l pf  "c A 

du--2P =f'cJ (u - Up). 
dt 'CA 

The flow momentum equation can be rewritten as 

D u  
- -  = A (u~ - u )  - V p ,  
Dt 

where 

[15] 

[16] 

and 

P = P0 + P'  [19] 

up = Up0')i [20] 

where the u' and p '  are small perturbations in velocity and pressure, respectively. It is noted that 
in [20] the fluctuation portion is neglected for the particle phase, in accordance with assumption 
5 mentioned previously. Since the solid particles have non-zero aerodynamic response time, their 
velocities will only begin to react to the fluid perturbation after the fluid transient is started. This 
paper is concerned with the linear stability of the two-phase flow to an imposed flow perturbation 
and, therefore, we are only interested in the instantaneous initial stability of the main flow. 
Subsequent particle velocity response to the flow fluctuation is therefore neglected. 

The zeroth-order equation is given as follows after substituting [18]-[20] into [16]: 

DU 
Dt = A(Up - U) - Vpo. [21] 

Linearization 
Following the traditional small-value perturbation approach explained in detail in Drazin & Reid 

(198l), one lets 

up = U(y)i + u'(x, y, t), [18] 

t 

A = Ppf'cr. [17] 
Pf "CA 
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Since Vp0 = 0 for the wake and with the relations U = U(y), Up = Up(y) and Up(y) = U(y), [21] 
is automatically satisfied. 

After dropping the higher orders of the small disturbance quantities, the linearized momentum 
equations for the perturbed velocities reduce to the following form: 

and 

0u' 0u' v '0U 0p' [22] 
o t  + u + = - a u '  - 0 -7  

Ov' Or' Op' 
- -  + U - -  = - A v  ' - - -  [23] 
t~t Ox Oy 

Using a perturbed stream function of the form 

' (x ,  y ,  t)  = ck (y  ) e x p [ i ( a x  - tot)l, 

the streamwise and the cross-stream perturbed velocity eigenfunctions are related to th(y) by 

[24] 

and 

d~b(y) 
u = - -  [251 

dy 

v = - i~b (y). [26] 

Combining [22] and [23] by removing the pressure terms and substituting in the expressions for 
velocities yield the following modified Rayleigh equation: 

(~tU - m - A i )  $(y) - ct$ (y)U" = 0, [27] 

where $(y) is the eigenfunction of this equation. 
The solution of this eigenvalue problem, for each value of A, may be viewed as providing 

a relation between the complex wavenumber ~t and the complex angular frequency to. When to is 
complex and ~ is real, the relation provides the temporal instability results. On the other hand, 
for a real to and a complex ~, the spatial instability can be investigated. In this paper, both will 
remain complex for the absolute/convective instability study. 

Comparing the modified Rayleigh equation for the two-phase flow with the Rayleigh equation 
of the particle-free flow, one may notice that, under the assumptions made in this analysis, we are 
able to study the effects of the particles by making a linear transformation of the angular frequency 
from to to to - A i .  Therefore, the presence of particles in the flow always enhances the stability 
of the flow, because A is a positive quantity. 

3. NUMERICAL PROCEDURE 

Boundary conditions require that the solution of the modified Rayleigh be bounded for 
y ~ + or. These conditions are denoted here by 

v ' (+  oo) = v ( _  ~ )  = (0, 0), [281 

where the double-argument notation refers to the real and imaginary parts of the complex 
amplitude, respectively. 

When the mean velocity profile is symmetrical with respect to y = 0, the modified Rayleigh 
equation admits both symmetrical and antisymmetrical disturbances. Symmetrical disturbances, 
which will be referred to as the sinuous mode, satisfy 

v(0) = (1, 0) and v'(0) = (0, 0); [29] 

while antisymmetric disturbances, referred to as the varicose mode, satisfy 

v(0) = (0, 0) and v'(0) = (1, 0). [301 
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Since the varicose mode shows no sign of absolute instability for the mean flow profile given 
in [8] (Monkewitz 1988) only the symmetric or Karman mode is considered in this work. 
Consequently, boundary conditions [29] are used. 

One of  the complexities of  the wake flow is that U, is not a constant along the streamwise 
direction. It varies from one station to another. As shown by Monkewitz (1988), if one travels 
downstream in the wake, the characteristics of  the instability of  the flow will change with the 
location. Both the absolute and the convective instabilities can occur. Therefore, one cannot 
simply choose the spatial or temporal theory to describe the stability of  the wake flow. Both the 
wavenumber a and frequency 09 should be considered as complex numbers. 

The modified Rayleigh equation [27] was solved using the shooting method. The numerical 
integration starts from the centerline (y = 0) and marches towards y = oo where the solution is 
supposed to match the boundary condition. For  the numerical integration of  [27], a standard 
fourth-order Runge-Kut ta  scheme with constant step size was used. Very intelligent initial guesses 
for the eigenvalues were important to guarantee the convergence of the algorithm. 

The absolute and convective nature of the instability was determined using the Briggs-Bers 
criterion, which requires the determination of the temporal growth rate of  the dominant discrete 
mode at the location of  an impulsive source. From previous discussion, one recalls that for this 
mode the quantity d09/dct, which will be referred to as the group velocity, is equal to zero. Hence 
it corresponds to a saddle point a0. The corresponding 090 is then used to determine the absolute 
and convective stability nature by examining the imaginary part J~(090)- 

It is not easy to determine the location of the branch point 090 or saddle point 0t 0 computationally, 
because the entire complex plane is involved. There are several methods suggested by Monkewitz 
(1988) and by some other authors (Huerre & Monkewitz 1990). The method used in this paper 
is based on the principle that 

d09 0 then d09r d09~ d ~ =  ~ = 0  and ~ - = 0 .  [31] 

Numerical differentiation was used to find 090 and ct 0. 

4. RESULTS AND DISCUSSIONS 

Sample calculations were performed for the cases of practical interest. The focus in the current 
analysis is the particle loading parameter, A, defined in [17] as 

A = a f  pp "cf [32] 
p f  "C A " 

It is noted that in [32] a = p'p/pp, where a is actually the local volume fraction of the particles. 
Therefore, a could be a function of  the spatial coordinates to represent different particle distribution 
patterns. The uniform particle distribution is the simplest case, i.e. a ( y ) =  const. For this case, 
A is also a constant. As shown in our previous paper (Yang et al. 1990), values of A of 0, 0.01 
and 0.1 are of  practical interest. These values were used in the sample calculations. The case A = 0, 
which corresponds to the particle-free single-phase flow investigated by Monkewitz (1988), provides 
a verification for our numerical technique and the computer problem. This base case is also 
useful as a benchmark for establishing the effects of  particles. In addition to the uniform particle 
distribution, two different particle distribution functions were also investigated to assess the effects 
of particle distribution on the instability of the flow. 

Because of  the complex nature of the wake flow, both convective and absolute instabilities can 
exist. Mathematically the presence of  particles in the flow can lower the imaginary part of the 
angular frequency at the saddle point J~(090), i.e. the particles can make the flow more 
convectively unstable or stable. Typical results for the effects of  particles on the two-phase stability 
are shown in figures 2-4. The figures show the map of  the wavenumber, ct, on the plane of the 
imaginary part vs the real part of  the frequency, 09, at the downstream location x / L  = 0.03 and 
the dimensionless centerline velocity Uc = 0.0012. The loading parameter, A, varies from 0 to 
0.05, and then to 0.1. As ar increases along the constant ~t i lines (labeled cti = 0 or ct~ = - 0.4), curved 
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Figure 3. Map of a on the to plane, for A =0.05, 
Uc = 0.0012 and uniform particle distributions. 

clockwise contours are traced about the point coo, which is the branch point. As A is increased, 
the imaginary part of the branch point, ot~(co0), decreases from 0.0454786 for A = 0 to 
-0.0045215 for A = 0.05 and then to -0.0545217 for A = 0.1. This means that the presence of 
particles in the flow can change the stability characteristics of the flow. The particle-free flow 
(A =0)  is absolutely unstable [J~n(co0) is positive]. The two-phase flow (A = 0.05 and 0.1) is 
convectively unstable [J~(co0) is negative]. The instability characteristics of the flow switch from 
the absolute instability to the convective instability due to the presence of particles. It was also 
found that the variation of J~(co0) with the particle loading parameter A is linear. 

In the neighborhood of the branch point, the relationship, ct = ~t(co), is double-valued. With the 
exception of the neighborhood of this point, lines of constant ot r and ot i are found to intersect 
orthogonally, indicating the analyticity of the functions co = co(~t) and ot = ot(co). The relationship 
between co and et in the neighborhood of the point is clarified by the plot of these same eigenvalue 
results in the ot plane where cot and coi are constant. This plot, displayed in figure 5, reveals the 
explicit relationship ~ = or(co). It is clear that ot 0 is a saddle point. 

The variation of J~(co0) with the downstream distance x, is shown in figures 6 and 7 for A -- 0 
and 0.05. It is apparent from the figures that the wake flow is absolutely unstable in the upstream 
near the bluff body, the flow then becomes convectively unstable further downstream. As shown 
in figure 6, the transition from absolute to convective instability takes place at x/L = 0.05, 
where L is the chord length, which agrees with the data provided by Mattingly & Criminale (1972) 
for a particle-free wake. This transition point plays a very important role in the stability analysis 
(Huerre & Monkewitz 1990). Koch (1985) states that the frequency at this point is approximately 
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equal to the global-mode frequency of  the flow. For the case of a two-phase wake, the result is 
shown in figure 7. One notes that the location of the transition point is almost at the very beginning 
of the wake which means that the presence of the particles hastens the transition such that 
almost the entire wake is convectively unstable. The corresponding frequency variations are shown 
in figure 8. One finds that the particles lower the frequency in general. This means that the particles 
lower the global-mode frequency of  the wake flow. In other words, the particles slow down the 
rolling motion of the vortices in the flow, which agrees with the results obtained from the numerical 
simulation of  a two-phase free-shear flow (Tang et  al. 1989). 

Figures 9 and 10 show the variation of J~(og0) with the parameter A for two different 
downstream stations. As expected, the larger the A the lower the Jcn(og0). The relationship is also 
linear. 

In the above, we presented results for uniform particle distributions. A non-uniform particle 
distribution is also of  practical interest because of  its different effects on the wake flow stability. 
In this paper, we consider a general case, i.e. the particle distribution along the cross-stream 
direction is represented by a step function, and the loading parameter, A, has the following 
corresponding form: 

A ( y ) = C = c o n s t  when lYI<Ds 
[33] 

A(y)  = 0  when lyl > Ds, 

where D~ is the half width of  the step. 
Figure 11 shows the map of ct on the 09 plane, where the constant C is set at 0.05 and D~ at 1.0. 

Comparing figure 11 with figure 3, we found that only the ~i = 0 line is affected by the step particle 
distribution. The variations of Y~(~0)  with C for D~ = 1 are shown together with the uniform 
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particle distr ibution case (D s = oo) in figures 9 and l0 for  downs t ream locations of  x/L = 0.003 
and 0.03, respectively. It  is noted that  the horizontal  coordinate  also represents the value o f  C for  
the step particle distr ibution cases. Fo r  Ds = l, the results are very close to those of  the un i form 
distr ibut ion case. I t  is impor t an t  that  we learn f rom this case that  those particles located more  
than  the distance L (corresponding to D~ = 1) f rom the centerline have a negligible effect on the 
wake  stability. Also in figures 9 and 10, we plot ted the results for  D~ = 0.5. C o m p a r i n g  these results, 
one notes that,  as expected, the ability of  particles to enhance the flow stability is weakened when 
the particles do not  cover  the entire flow field. However ,  the weakening effect due to the nar rowing  
o f  the wake  region occupied by the particles becomes  less significant as we move  downst ream.  
This is indicated by the fact that  the differences are much  smaller for x/L = 0.03, as shown in 
figure 10. 

To  be more  specific abou t  the effects o f  the particle distr ibution,  the slope of  the C vs J ~ ( c o 0 )  
line is plot ted as a funct ion of  D~ in figure 12 because o f  the linear relat ionship betwen Jm(a )0 )  
and  C. This figure shows quant i ta t ively that  the particle distr ibution affects the stability 
characterist ics o f  the wake  flow. It  is evident that  when D~ is small the change is more  drastic, 
which means  that  the particles are mos t  effective when they are located near  the centerline, y = 0. 
This result agrees with the asympto t ic  na ture  o f  [27] which shows that  the funct ion ~)(y) behaves 
like e -oy with a positive coefficient D for  large values of  y. 
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5. CONCLUSIONS 

Numerical investigations of the effects of particles on the instability of wake flows are presented. 
Major simplifying assumptions are that the mean velocity profile of the two-phase flow is identical 
to that of the single-phase flow and that the particles are initially in dynamic equilibrium with 
the gas flow. It is also assumed that the continuous-phase flow is incompressible and inviscid. 
The resulting modified Rayleigh equation was solved for solid particles or droplets in a gas flow. 

In general, the presence of particles tends to stabilize the wake flow. An absolutely unstable 
particle-free wake flow might become convectively unstable when contaminated with particles. 
The most amplified rates would be lowered due to the particles in a convectively unstable wake 
flow. It is also found that with the addition of particles into the flow, the global-mode frequency 
is lower than that of the particle-free case. This means that the particles slow down the rolling 
motion of large vortices in the flow. 

The particle distribution pattern along the cross-stream direction also affects the stability of the 
wake flow. The most effective particles are those located near the centerline of the wake. 
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